Course	Credit Hours	Computer Modelling of Electrical Power Systems	Contact	Total
Code	(Th-Pr)		Hrs/Week	Contact Hrs
EPE 813	3.0-0		(Th-Pr)	(Th-Pr)
21 2 010	0.0 0	(Elective)	3.0-0	45-0

Course Outline:

1. This course covers the computer modelling of synchronous machines, transformers, transmission lines, loads, electromagnetic transients, load flow and system stability study under power electronic control.

Eligibility Criteria:

B.E (Electrical Engineering)

Recommended Books:

S. No.	Title	Author(s)	Assigned Code	Remarks
1.	Computer Modelling of Electrical Power Systems	Jose Arrillaga	JA	Text Book
2.	Power System Modelling and Scripting	Federico Milano	FM	Reference Book
3.	Power System Stability : Modelling , Analysis and Control	Abelhay A. Sallam	AA	Reference

Course Objectives:

2. The objective of this course is to develop a sound understanding in the students regarding modelling of different parts of electrical power systems and enable to use different computational tools to model a complete power system and perform different studies

Learning outcome:

3. At the end of the course students shall be able to do the modelling and analysis of power flow and transient studies in the power systems using different simulation software's widely used in the industry.

Topics Covered:

No.	Topics	Book	Contact
			Hours
1.	Introduction to theoretical models and computer	JA	10

	programs		
2.	Transmission Systems	JA	13
	 Linear transmission techniques 		
	Basic single phase modelling		
	 Three phase system analysis 		
	 Three phase model of transmission lines 		
	 Evaluation of overhead line parameters 		
	 Underground and submarine cables 		
	 Three phase model of transformers 		
	 Formation of system admittance matrix 		
3.	Computational load flow analysis	JA	12
	 Nodal method 		
	 Conditioning of Z Matrix 		
	 Newton Raphson load flow 		
	 Fast decoupling load flow 		
	Three phase load flow		
	 Load flow for stability assessment 		
	 Load flow under power electronics control 		
4.	Electromagnetic transients modelling	JA	12
	 Numerical Integrator substitution for resistor, 		
	capacitor and inductor		
	 Formulation and solution of system nodal 		
	equations		
	 Switching discontinuities and root matching 		
	techniques		
	Synchronous machine and transformer model		